The Bitter Taste that Gets You Going: Quinine Mouthrinse Provides Instant 4% Power Boost During 30s All-Out Sprint
Getting ready for an all-out sprint? A bitter mouth rinse W/ quinine will provide instant power boost of 4% in ‘ur 30s cycle sprint more than a sweet mouth rinse could do . |
Against that background and in view of the similar brain activation patterns scientists have observed in response to bitter and sweet taste perception, it appears only logical for Sharon Gam et al. to speculate in a 2014 paper, which is still worth its own SuppVersity article (!), that rinsing w/ quinine, a distinctly bitter substance, could produce the same or at least similar power increments as sweet substances.
For longer sprints bicarbonate may be the more effective choice
To be able to tell how similar sweet and bitter taste effects on sprinting performance actually are, they scientists compared the effects of 0.36 mL/kg body mass of a 2-mM quinine HCl solution (QUI; Sigma-Aldrich), not just to plain water and a no rinse control (CON), but also to a 0.05% w/v aspartame solution (ASP; Sigma-Aldrich), all of which were used immediately before the 30s all-out sprint on an Exertech EX-10 front access cycle ergometer.
Figure 1: My graphical "illustration" of the study design (based on facts from Gam. 2014). |
Bitter perception (Mennella. 2013). |
Figure 2: Relative changes in mean & peak power (%) + effects sizes for quinine vs. CON, WAT or ASP (Gam. 2014). |
Bitter taste increases ghrelin, ghrelin rapidly increases noradrenaline and adrenaline - if that's what explains the effects of quinine will yet have to be elucided in future studies. |
It is thus questionable, whether the ghrelin => (nor-)adrenaline hypothesis provides the correct explanation - not just, but also because previous research suggests that the benefits of rinsing your mouth with bitter substances before sprinting may have the same origin as those that occur in response to carbohydrate mouth-rinsing, the triggers of which are likewise believed to "reside in the central nervous system" (Jeukendrup. 2010) and thus to be of non-metabolic origin.
In view of the fact that this hypothesis is, as Gam et al. point out, in line with the results of "studies based on functional magnetic resonance imaging [, which] have shown that the brain areas activated in response to the bitter tastant, quinine, overlap to a great extent" with those brain areas that are stimulated when you rinse with CHOs / sweet solutions (Zald. 2002; Small. 2003), finding mechanistic explanations for one of these performance enhancer (e.g. the sweet mouthrinse) may also yield explanations for the performance enhancing effects of the other one. Whether that's the actual reason for the preformance increases does yet appear questionable. After all, a 2015 follow up study by the same researchers showed that that mouth rinsing with the same bitter quinine solution without ingesting it won't improve young athletes' sprint cycling performance (Gam. 2015) - in view of the presence of ghrelin producing cells in the digestive tract (see Figure in this bottom line), this does not falsify the "ghrelin" => (nor-)adrenaline hypothesis, which would also be in line with the increases in corticomotor excitability Gam et al. observed in yet another follow up study in male competitive cyclists (Gam. 2015b), in which the quinine was ingested, too | Comment!
- Beaven, C. Martyn, et al. "Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance." Applied Physiology, Nutrition, and Metabolism 38.6 (2013): 633-637.
- Benedetti, Ettore, et al. "Sweet and bitter taste: Structure and conformations of two aspartame dipeptide analogues." Journal of Peptide Science 1.6 (1995): 349-359.
- Depoortere, Inge. "Taste receptors of the gut: emerging roles in health and disease." Gut 63.1 (2014): 179-190.
- Enomoto, Mitsunobu, et al. "Cardiovascular and hormonal effects of subcutaneous administration of ghrelin, a novel growth hormone-releasing peptide, in healthy humans." Clinical Science 105.4 (2003): 431-435.
- Gam, Sharon, Kym J. Guelfi, and Paul A. Fournier. "Mouth rinsing and ingesting a bitter solution improves sprint cycling performance." Medicine and science in sports and exercise 46.8 (2014): 1648-1657.
- Gam, Sharon, et al. "Mouth rinsing with a bitter solution without ingestion does not improve sprint cycling performance." European journal of applied physiology 115.1 (2015a): 129-138.
- Gam, Sharon, et al. "Mouth rinsing and ingestion of a bitter-tasting solution increases corticomotor excitability in male competitive cyclists." European journal of applied physiology 115.10 (2015b): 2199-2204.
- Janssen, Sara, et al. "Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying." Proceedings of the National Academy of Sciences 108.5 (2011): 2094-2099.
- Jeukendrup, Asker E., and Edward S. Chambers. "Oral carbohydrate sensing and exercise performance." Current Opinion in Clinical Nutrition & Metabolic Care 13.4 (2010): 447-451.
- Rozin, Paul. "“Taste-smell confusions” and the duality of the olfactory sense." Attention, Perception, & Psychophysics 31.4 (1982): 397-401.
- Small, Dana M., et al. "Dissociation of neural representation of intensity and affective valuation in human gustation." Neuron 39.4 (2003): 701-711.
- Zald, David H., Mathew C. Hagen, and José V. Pardo. "Neural correlates of tasting concentrated quinine and sugar solutions." Journal of Neurophysiology 87.2 (2002): 1068-1075.