Vitamin D Supps & Testosterone | Black Tea May Keep You Leaner Than Green Tea | Pea, Oat, Rice Protein & Glycemia
You can expect more research updates like this one in 2019 on the SuppVersity... as well as other changes. And best of all, there's still time to let me know what you'd like to see / be changed over the course of 2019... aside from the overdue switch to a mobile-ready webdesign (#IRemeberThePromises), obviously. |
What's new? Well, study A doesn't really tell you that vitamin D doesn't help, study B shows that black tea does not work by simply ruining your appetite, and study C is one of those where context matters.
- Vitamin D supplements won't (re-)start your balls, boys... scientists find "no significant treatment effect on serum TT [total testosterone] or on the remaining secondary outcome variables" (Lerchbaum 2018) in a cohort of Austrian hypogonodal (=low testosterone, i.e. serum TT levels < 10.4 nmol/l) men with suboptimal (< 75 nmol/l) 25-hydroxyvitamin D [25(OH)D] levels.
Subjects were randomized to receive 20,000 IU of vitamin D3/week (n = 50) or placebo (n = 50) for 12 weeks. The primary outcome was the subjects' total testosterone level (TT), which were measured using mass spectrometry. In addition, the researchers also checked free testosterone, the free androgen index (Ratio of TT to SHBG), sex hormone-binding globulin (SHBG), estradiol, follicle-stimulating hormone (controls sperm production), luteinizing hormone (controls hormone production), metabolic characteristics, and body composition.
Boring? Not really, look...
If you think the study is boring 'cause Lerchbaum et al. (2018) didn't find the beneficial effect on testosterone you have been hoping for? In that case, you don't understand the purpose of science and (probably) haven't looked at the actual data, either. There's more to it than the putative null-result ("Vitamin D doesn't help w/ low T"): the D-supplementation didn't even work for 'D' - at least, there were no inter-group differences in the pre- vs. post-supplementation change in vitamin D levels.
* * * * *
- Study shows that black tea, in particular, protects from diet-induced obesity... While we are talking about rodent data, it is imho worth mentioning that the scientists from the Center for Human Nutrition at the University of California, Los Angeles, USA (Henning 2018) observed quite an intriguing difference between co-feeding green vs. black tea on top of a high-fat (=hyperenergetic, not "low carb keto") diet.
Figure 2: Body fat percentage (subcutaneous) relative to body weight, left; average energy intake (kcal/d, right | Henning 2018); labeled means of dietary interventions without a common letter differ by diet; P < 0.05.
That's the effect you're actually looking for in an anti-obesity agent, considering that most hedonic eating is among the #1 problems in human (vs. rodent) obesity.
As of now, it is yet not clear, what exactly is going on, here. The scientists' analyses of the rodents' poop do, however, suggest that it may be a downstream effect of an increase in short-chain fatty acids (SCFA | generally considered a trigger of various of the health benefits from increased consumption of fiber and improvements in your microbiome) in response to black-tea-specific increases in the relative proportion of Pseudobutyrivibrio bacteria - in other words: the modulatory effects of black tea on the rodents' microbiome. Which raises the important question: How much black tea did it take?Figure 3: Phenolic composition of the tea extracts that were used in the study by Henning et al. (2018).
* * * * *
- Plant proteins may help you manage your post-prandial glucose levels... now the question is: do they do this to a greater extent than dairy proteins? While the former is something you'll probably have read elsewhere, already, the important follow-up question to the latest research by Sze-Yen Tan and colleagues from Singapore Institute for Clinical Sciences (SICS) is the reason why you (hopefully) read every SuppVersity article - context + extra-info.
How's that? Well, the Asian scientists did not include a dairy protein group when they "examine[d] the effects of protein supplementation from three plant sources to a sugar-sweetened beverage on postprandial glycemic responses in healthy adults" (Tan 2018). To be specific, the scientists conducted a randomized, crossover acute feeding study consisting of four treatments: (1) chocolate beverage alone (50 g carbohydrate), or (2) added with 24 g (a) oat, (b) pea or (c) rice proteins. It is also worth mentioning that the scientists' subjects were twenty Chinese males (mean ± SD age 26 ± 5 years; body mass index 21.5 ± 1.7 kg/m²) who ingested the test drink after an overnight fast - hence, the results may differ for people from another gene pool and/or for your second, third, or fourth meal of the day.Figure 4: Insulin (yellow, left), glucose (green, middle), and GLP1 (blue, right) iAUC (measured over 180 minutes) among Asian males following the control, oat, pea, and rice protein test beverages (Tan 2018). Figure 6: Changes in participants’ perception on hunger (a), fullness (b), desire-to-eat (c), preoccupation with foods (d), and amount of foods could be eaten (e) following the control, oat, pea, and rice protein in 20 Asian males (Tan 2018)
Reason enough to take another look at a comparable study using whey protein... well, not so easy to find one in healthy individuals, but there is one: "Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins" (Nilsson 2004).
Figure 5: The risk for cardiovascular death increases threefold as 2-hour post-challenge glucose levels increase from 54 to 199 mg/dl, although these readings are all in the nondiabetic range - in other words: highly relevant also for those of you whose HbA1c says that don't have blood glucose problems (O'Keefe 2007). |
- The Danish study evaluated the effect of common dietary sources of animal or vegetable proteins on concentrations of postprandial blood glucose, insulin, amino acids, and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1] in healthy twelve healthy volunteers who were served test meals consisting of reconstituted milk, cheese, whey, cod, and wheat gluten (28g protein) with equivalent amounts of lactose. A standardized load of white-wheat bread w/ equal amounts of total carbs was used as a reference meal.
The results of the study are in line with what we see in Tan's more recent plant protein study, the insulin release increased with protein supplementation, however, unlike Tan et al. Nilsson et al. did the necessary tests to link the rise in insulin to the rate of appearance of specific amino acids, with the strongest correlations for leucine, valine, lysine, and isoleucine.
Dairy proteins seem to be more potent, however...
An important contrast to the results of the study at hand, however, was the statistically significant reduction in postprandial glucose the Danish researchers found in response to the two tested dairy proteins, i.e. milk-powder and whey protein where the postprandial glucose AUC was a whopping -62% and -57%, respectively, lower than in the control group.
It cannot be emphasized enough, though, that this happened more or less in response to serious increases in post-prandial insulin, which was almost 2-fold elevated in the dairy protein groups - that's somewhat less than what we see (albeit in different subjects and with different controls and other study variables) in the study at hand, for pea or oat protein.Figure 7: Studies in young healthy males (here Nilsson 2004) show that dairy protein can have more powerful effects on glycemia than they were observed in the study by Tan et al. However, these improvements are the result of doubled insulin levels not everyone is going to be happy with.
What to expect in 2019? That's it for today. I hope you enjoy this format because I plan to write more of these research updates in the future. I will also finally take baby steps to transition the SuppVersity to another technical backbone. Currently, my favorite Wordpress, but if you have better suggestions or alternatives such as medium.com, let me know. The same goes for the type and format of articles and the question whether I should transplant the "news" from Facebook.com/SuppVersity to the new landing page, where they could/would be properly archived and wouldn't "disappear" into thin air ;-)
References:- Alessi, Dario R., et al. "Mechanism of activation of protein kinase B by insulin and IGF‐1." The EMBO journal 15.23 (1996): 6541-6551.
- Henning, Susanne M., et al. "Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice." European journal of nutrition 57.8 (2018): 2759-2769.
- Lerchbaum, Elisabeth, et al. "Effects of vitamin D supplementation on androgens in men with low testosterone levels: a randomized controlled trial." European journal of nutrition (2018): 1-12.
- Melnik, Bodo C. "Evidence for acne-promoting effects of milk and other insulinotropic dairy products." Milk and Milk Products in Human Nutrition. Vol. 67. Karger Publishers, 2011. 131-145.
- Nilsson, Mikael, et al. "Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins." The American journal of clinical nutrition 80.5 (2004): 1246-1253.
- Rommel, Christian, et al. "Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways." Nature cell biology 3.11 (2001): 1009.
- Tan, Sze-Yen, et al. "Influence of rice, pea and oat proteins in attenuating glycemic response of sugar-sweetened beverages." European Journal of Nutrition 57.8 (2018): 2795-2803.