The Ketogenic Diet & Your Gains: Study Shows Body Comp. Benefits (Fat ↓), but Decreased Muscle Gains, However...
Unfortunately, the authors do not report what exactly (foods) the subjects ate. |
Learn more about and related to low-carbohydrate diets in previous SuppVersity articles:
Figure 1: Overview of training protocol. WK: Workout (microcycle); UL: Upper-Limb; LL: Lower-Limb; R: Rest; 30X: 3 s of eccentric contraction and explosive movement concentric (Vargas 2018). |
In combination with the three rest days, the 32 workouts all subjects performed over the course of the 8-week study triggered the expected improvements in body composition (=an improvement of the lean-to-fat-mass ratio) in all subjects irrespective of whether they had been randomized to the control diet, the ketogenic diet (KD), or the non-ketogenic diet (NKD).
Macronutrient composition of the ketogenic and non-ketogenic diets. |
The use of a hypercaloric diet + resistance training is imho a novelty in the realms of low-carb research. Accordingly, it's all the more disappointing that methodological short-comings limit the significance and hamper the interpretation of the results. What am I talking about? Well, neither the levels of ketones that were eventually measured with keto-sticks from week two onward, nor the macro-composition of the "control" diet were adequately reported... and, more importantly, the actual energy and macronutrient intake of the subjects wasn't even tested - an important short-coming in view of the hunger-quelling effects of ketogenic diets (Gibson 2005; Bellissimo 2015).
Figure 2: Changes in parameters of body composition over the 8-week study on KD, NKD or control diet (Vargas 2018). |
There are things you should be aware of before jumping to conclusions
The first thing doesn't even require looking beyond the results of the study at hand: (1) the overall effect of the workout + diet combinations are marginal or small, (2) only the increase in lean mass in the NKD and the decrease of fat mass in the KD group were statistically significant with p < 0.05, and (c) the study which must be considered a small scale pilot clearly suffers from the lack of dietary control. The latter is particularly problematic because previous studies have observed significant appetite reducing effects with ketogenic diets. In the absence of rigorous dietary control, both, the increased fat loss and the decreased muscle mass could well be a result of the subjects' non-compliance with the standardized energy target of 39kcal/kg/d.
What is relevant, however, is that comparing DXA data from high- vs. low-carb phases is akin to comparing apples and oranges; and this is particularly true if the standard 2-compartment model is used (cf. Toombs 2012 | note: the study at hand didn't report which method Vargas et al. used, but if they'd used the more accurate but still not infallible 4-component- aka 4C-model, I am sure the scientists would have highlighted that).
The visceral fat data isn't more reliable. |
Figure 4: Relative changes in leg lean and fat mass vs. baseline following glycogen depletion and glycogen loading with and without creatine (Bone. 2017) - this particular figure was initially published in a SuppVersity article from 2016. |
A fair comparison using DXA data would require normalizing the groups' glycogen levels
In that, it is worth noting that Bone's results deviate from a previous study by Rouillier et al. who observed a smaller increase in body fat (compared to lean mass) and thus an overall decrease in body fatness in response to 3 days on a high carbohydrate diet in their 2015 study. Whether and to which extent the differential effects on the subjects' measured (not real) fat mass can be explained by methodological differences such as the lack of intense training and/or differences in the subjects' athleticism between the studies cannot be said for sure at the moment.
Figure 5: Let's be clear here, I don't advocate super-compensation strategies as they were used in Wilson's 2017 study week 11, as this would skew the data in the opposite way(s), i.e. exaggerate the lean mass gains on a ketogenic diet. |
What? Oh, no, this does not mean that all previous studies on the effects of ketogenic diets on body composition are bunk. In view of the fact that >90% of them are weight loss trials, the vast majority of this study will have a certain degree of muscle glycogen depletion in both the keto and the control diet simply due to the lack of total energy. This is in contrast to the study at hand, where the non-ketogenic and the control diet were not just significantly higher in carbohydrates, but, in view of the lack of dietary control and the repeatedly observed appetite suppressant effects of ketogenic diets, probably also significantly higher in total energy intake. Against that background, it is reasonable to assume that any glycogen-/water-related differences in DXA-based estimates of body composition would be exasperated compared to studies that used high vs. low carb diets for weight loss purposes.
Re-read my analysis of Wilson's 2017 study that epitomized the influence of muscle glycogen on DXA data.
|
Now, if the overall carbohydrate intake of subjects is reduced, this will necessarily affect the skeletal muscle glycogen stores and hence any DXA-based estimation of the subjects' body composition; and it will do so in a way that we haven't studied sufficiently in the context of a supposedly hypercaloric diet as it was applied in the study at hand.
Against that background and in view of the fact that the appetite suppressive effects of ketogenic low-carb diets could well have messed with the scientists' intention to overfeed their subjects, only a fool would use the study at hand as "proof" of the pro-fat loss and/or anti-muscle-gain effects of ketogenic diets (needless to say that only a fool would consider a single small-scale study, in isolation, reliable "proof" of anything ;-) | Comment on Facebook!
- Bellissimo, Nick, and Tina Akhavan. "Effect of macronutrient composition on short-term food intake and weight loss." Advances in Nutrition 6.3 (2015): 302S-308S.
- Bone, Julia L., et al. "Manipulation of muscle creatine and glycogen changes dual x-ray absorptiometry estimates of body composition." Medicine & Science in Sports & Exercise 49.5 (2017): 1029-1035.
- Bone, Julia, and Louise M. Burke. "DXA estimates of body composition and carbohydrate loading." Annals of Nutrition and Metabolism 68.3 (2016b): 228-229.
- Burke, L. "Dual X-Ray Absorptiometry (DXA) for measurement of body composition in athletes: Experiences that underpin the importance of optimising the reliability of measurement." Journal of Science and Medicine in Sport 20 (2017): 76.
- Gibson, Alice A., et al. "Do ketogenic diets really suppress appetite? A systematic review and meta‐analysis." Obesity Reviews 16.1 (2015): 64-76.
- Nana, Alisa, et al. "Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people." Medicine & Science in Sports & Exercise 44.1 (2012): 180-189.
- Nymo, Siren, et al. "Timeline of changes in appetite during weight loss with a ketogenic diet." International Journal of Obesity 41.8 (2017): 1224.
- Rouillier, Marc-Antoine, et al. "Effect of an acute high carbohydrate diet on body composition using DXA in young men." Annals of Nutrition and Metabolism 66.4 (2015): 233-236.
- Toombs, Rebecca J., et al. "The impact of recent technological advances on the trueness and precision of DXA to assess body composition." Obesity 20.1 (2012): 30-39
- Vargas, Salvador, et al. "Efficacy of ketogenic diet on body composition during resistance training in trained men: a randomized controlled trial." Journal of the International Society of Sports Nutrition 15.1 (2018): 31.